
U U NTRTSE RVREED STEHNIQUS INTlOTGRIOAUASTE
SCHOOL MONTEREY CA V Y LUN ET AL. NOV B7 NPS52-97-S50

UNCLASSIFIED F/O 12/5 ML

smmhmmhhmhhul

11111 u £

11111

OlC ILL C(EN

NPS52-87-050

* NAVAL POSTGRADUATE SCHOOL
* Monterey, California

(1

INTEGRATING ADVANCED TECHNIQUES INTO

F MULTIMEDIA DBMS

Vincent Y. Lum
C. Thomas Wu

David K. Hsiao

t November 1987

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

88 1 26 063

UNCLASSIFIED

SECURITY CLASS,';CA- O N S :AC:

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release; distribution
is unl imi ted.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-87-050
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School 52 Naval Ocean Systems Center

6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 San Diego, CA

8. NAME OF FUNDINGSPONSORiNG 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Naval Ocean Systems Center N6600187WR00325
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

San Diego, CA ELEMENT NO NO NO ACCESSION NO

I RC32510 H5C97-87 JO#CDB3447A
1. TITLE (Include Security Classification) 01

Integrating Advanced Techniques into Multimedia DBMS

12. PERSONAL AUTHOR(S)
Vincent Y. Lum, C. Thomas Wu and David K. Hsiao

13a. TYPE OF REPORT 113b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Technical -I FROM TO November 1987 32
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

I FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Database management systems have been developed mainly for commercial and business pro-

cessing. As such, it generally manages formatted data, rather than information, which is

less structured and comes in many forms such as text, graphics, images, voices, and signals.

Beyond the capability of handling multimedia information, non-business application areas

call for futher requirements. Real-time processing, risk assessment, and partial answers

are some of the more important requirements, especially in the military applications. In

this paper, we discuss issues involved in creating such advanced database management system

and propose some approaches.

20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

13 UNCLASSIFIEDUNLiMITED 0 SAME AS RPT D OTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Vincent Y. Lum 408-646-2449 52

DO FORM 1473, 84 MAR 83 APR ed t on ray be -sed until exhausted SECURITY CLASSiFICAT,ON OF HS AGE
All other editons are obsolete * U € Poe ne n i 0" hce I9SS-OS.243

M , 14* .

Integrating Advanced Techniques into Multimedia DBMS

Vincent Lum, C. Thomas Wu, David Hsiao
Naval Postgraduate School

Department of Computer Science, Code 52
Monterey, California 93943, U. S. A.

ABSTRACT

batabase management systems have been developed mainly for commercial and business pro-

cessing. As such, it generally manages formatted data, rather than information, which is less

structured and comes in many forms such as text, graphics, images, voices, and signals. Beyond

the capability of handling multimedia information, non-business application areas call for further

requirements. Real-time processing, risk assessment, and partial answers are some of the more

important requirements, especially in the military applications. In this paper, we discuss issues

involved in creating such advanced database management system and propose some approaches.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced []
Justificatlo

*i- \'ibtityCodes

00

* V * *1I~ -.

I. INTRODUCTION

As the DBMS' technology matures, its applications become more and more sophisticated and

diversified. Each new application generally brings along new requirements as well. In most of

the past years, DBMS research and development was concentrated on the commercial applica-

tions where the data is usually formatted. In the newer applications, such as office automation

and engineering, data come in both formatted and unformatted forms, including text, graphics,

and images. In some of these more advanced applications, one can expect data to be in voice and

signal forms as well. To be able to handle the data in the unformatted forms increases the com-

plexity. To be able to store the data and get them back is not a problem. To be able to do these

operations efficiently is a different matter. Thus, many research projects have been started to

address the new problems [BATO85, CHOC81, CHOC84, CHRI86a, CHRI86b, CROW87,

DADA86, LUM82, MADI87b, MADI87c, MASU87, STON87, WOEL86]. Compared to the

DBMS used in the commercial systems, these new research projects intend to incorporate into

the DBMS many functions that are not generally considere necessary or even useful in com-

mercial systems.

Data in the commercial applications generally are short, from few bytes to few hundred bytes.

Unformatted data, on the other hand, generally are long, up to millions of bytes. If we were to

only store and retrieve one particular unformatted data string, we would not have much of a

problem, even when the data is long. We can simply store the data as one does for a file, and

retrieve it as a file. Indeed, this is the normal way that one does with the graphics and image data

in the engineering applications. However, to do it this way means one would not be gaining

many of the benefits provided by the DBMS and their technology. The DBMS here merely

The term DBMS will be used throughout the paper as both singular and plural depending on con-
text.

,2'

behaves like a file access method. To gain the other benefits, we must provide capabilities to pro-

cess unformatted data in a similar that we can do for the formatted data. Currently, we are far

from this goal.

Indeed, in commercial processing, not only the data handled by the DBMS is short and format-

ted, but the structure of the information is also simple. It is this simplicity that allows us to use

tables, as one does with the relational model, to store and process the data effectively. As we

learned later in the newer applications, we found that we must have a more powerful data model

to allow us to capture the necessary ingredients presented in these more complex applications.

While we can still use a relational DBMS to construct the complex objects, it is generally agreed

that simple enhancement to the relational systems is not sufficient. We shall discuss this point

further in the section on data model.

When DBMS technology was developing, we did not forsee the broad use of this technology.

We built the systems with operations that would handle the simple structures. As we cannot

expect the different operations that will be needed for the different complex objects to be imple-

mented, one cannot create a DBMS that would provide efficient operations for these unknown

objects. If one just relies on the normal DBMS operations to process all the complex objects, one

will not only encounter inefficiency in processing the data, but one will likely lose the advantage

of the use of high level language interface provided by a DBMS.

Consider, for example, that one wants to use a DBMS to manage the data in engineering designs.

Suppose one would like to display a car in a graphical form, but inside the system, the data is

stored in geometric parameters, not just a simple bit string. The user would have a hard time to

use the DBMS to rotate the view of the car using only the DBMS operations. What one has to do

is to write programs to work with the data received from the DBMS and transform them to a

3

L OW V\ V.. A V

suitable form. One naturally thinks that these operations should be defined and used in such a

way as if the DBMS operations have been extended to have these new functions. Such a concept

is referred to as abstract data type in the programming language environment [GUTT78,

LISK75, SHAW80]. The same concept can be utilized in the DBMS environment as well.

Related directly to the issues just mentioned is the user interface. While much has been done in

this area, much remains to be done. One reason for this is that more and more people are using

DBMS to process data. The users today range from the very sophisticated to the very naive. Yet

we have to accommodate all of them. Whether one should eventually have only one user inter-

face or have many is still unclear. Nevertheless, the issue should be careflully studied.

In fact, we really cannot expect to know what will be coming in the future in terms of applica-

tions. Neither can we see what will be the development of different technologies. We do know,

however, that we want the computer to do more and more of our work. We want to have the

computer to do searching and processing better than we, the humans, can. Our first step is to

approximate ourselves. At least, we do this when we do not know how else to do. This means

that we will have in the future more and mor AI techniques incorporated into DBMS.

To achieve this, it means we must have an architecture of a DBMS to be so structured that new

techniques can be 'plugged into' an existing system in some way. Such a system is currently

called extensible system and is being studied in many places [BATO87a, BATO87b, LIND86,

McPH87, OREN86, SHCA86, STON87]. We would like to further extend the limited goals of

some of the studies to include not only some simple additional functions that are allowed to

include into a system, but also sophiscated techniques like Al, signal processing, voice and

sound processing, etc.

Users of any computer system are always concerned about the efficiency of the system. Thus,

4

xV.% N

creators of DBMS have always tried to see how high performance can be achieved. Today's

DBMS in general give good performance. In fact, in some cases, they support extremely high

transaction rates. However, we have always been concerned only with commercial applications.

There are other applications that have not been traditionally our concerns. For example, we

know of banking applications, where the transaction volume is high, and customers are waiting

in line at the terminals. We say that we want to create a real-time system so that customers

would not become upset for waiting too long. Here, we mean 'real-time' to be 10, 20, or 30

seconds or more. Such timing would be quite satisfactory, as people can not react much faster.

However, in some advanced military applications, this kind of measure is totally unacceptable.

For example, if the DBMS is used to store data for identifying objects, one may be forced to do

split second decisions when one sees an object approaching. The same would be true if the com-

mander of a battle group of ships wants to see how he would want to react to a battle situation.

He does not always have the luxury to wait half a minute just to see what may come out from the

computer.

Under situations like these, we need to have a DBMS that not only can handle multimedia infor-

mation, but alway be able to react flexibly. In urgent cases, the response must be exceedingly

rapid. At other times, one can afford to wait a while. How can we achieve such a goal? We must

start from the beginning to design a DBMS that can do things this way. We do have a number of

things that we must consider. First, we must see how to separate transactions that are extremely

urgent from the ordinary ones. We have to store data and information that would be useful for

this purpose. We most likely have to add special data structures that would be useful for this pur-

pose.

In fact, it is definitely useful to see how one can assign risks to the transactions. That is, if we

S

fail to response to a query, what may be the consequence. If the case is between life and death,

as would be the case in some combat situations, one must deliver the answer fast, extemely fast,

even if the system has not gotten the complete answer. This approach would be contrary to the

current practice in DBMS applications. Today, a DBMS would either give a final answer or

nothing at all. It will search its whole database to find the definite answer. It will not say, 'this is

the likely answer'.

This is not the way people do things. Most of the time, people can only find approximate and

incomplete answers and do the best we can with them. Even in AI studies, most researchers still

try to work with the approach that will give only complete and definite answers. We think that in

many applications, maybe the probabilistic or heuristic approach would be sufficient. In fact, if

the data is massive and the urgency is acute, this may be the only alternative other than giving

nothing at all.

To include probabilities for heuristic search in the stored information is difficult. This happens

because we cannot forsee all the applications or the queries. However, in many cases, we can

use the statistical approach such as sampling to assess data to derive information. To do so

would require additional functions and structures in the DBMS. We would also have to develop

different strategies to see how we want to handle the different queries.

One other situation that we feel important, but has traditionally been ignored, is that in many

situations we cannot limit our system to be homogeneous. For example, it is not feasible for the

whole government and the armed forces to possess DBMS of one kind or use only one data

model in all the systems. The most likely scenario is that there will be many systems with dif-

ferent data models, but information is to be derived from these diverse systems and assembled in

one of them for presentation. We should develop capabilities that would allow us to handle this

6

U.-. S . U .
S. ~ *.-~~i'** *~*..*..

kind of situation.

We would like to point out that the purpose of the report is to identify issues and scope out the

major areas that need solutions to provide a foundation to support the applications in the various

Navy programs, specifically, in the Command Systems Technology Block Program. Naturally

any operational DBMS must incorporate many of the solutions already existing or becoming

available in order to have a complete system. Since we have only a very small resource, we feel

that it is best for us to work on those problems that are critical for us to have solutions in order to

proceed further, or that are not actively pursued elsewhere in the DBMS research community.

Consequently, important areas such as consistency control , recovery and reliability in a distri-

buted DBMS environment, are not addressed as they are actively pursued in the DBMS research

and development community because of their values in the commercial applications. We would

also like to point out that, while we identify problems that may be specific in the Command Sys-

tems Block, it is believed that the solutions when available will have a much broader application.

In the following sections, we shall discuss some of the above issues in more details. We shall

also propose some approaches in some cases.

IH. DATA MODEL

The abstraction concepts our model proposed in [MADI87a] supports molecular aggregation,

generalization, version, and instantiation. These concepts are necessary (but probably not

sufficient in many application areas) to capture the semantics involved in the advanced applica-

tion areas. We add one more abstraction concept called medium to the model so now it will be

able to describe multimedia objects.

7

%6 * *If. .

,-..r- '- VU W- V W r J - -W % r V - - IV -. F ' v r , V. 7 'r .v -.W' I .- . r

Molecular aggregation is the abstraction of a set of objects and their relationships into a higher-

level objects [SMIT77]. This abstraction allows a viewing of objects from different levels of

generality. At the executive level, for example, one may only be interested in tank, while at the

plant level, one may be interested in the details of tank, that it is an aggregation of cannon, guns,

caterpillar treads, etc. At the wheel engineering department level, one is now interested in the

details of a wheel. The idea is to give the user only the amount of details he nJIs for a particu-

lar application.

The generalization concept [SMIT77] is used in our model to provide the relationship between

types and their subtypes. A molecular object has a type and may consist of many subtypes. For

example, a molecular object of type surface ship has subtypes carrier, destroyer, frigate, etc.

In other words, a type is a generalization of a set of named subtypes. Notice that subtypes

inherit their supertype's attributes and possess sets of attributes unique to them. A molecular

object of type light cruiser inherits the attributes of surface ship and has a set of attributes

unique to it such as number-of-depth-charges-loaded.

A version of a type (or a subtype) is defined to be a molecular object with interface details corn-

pletely specified, but with implementation details in some stage of completion. A molecular

object surface ship may have different versions such as nuclear-powered, diesel-powered, etc.

These versions have the same interface, i. e. characteristics which distinguish them as surface

ships. A subtype of an object, on the other hand, has different interface detail. A subtype light

cruiser has an interface different from the subtype carrier. The reader may wonder how the

nuclear-powered could be a version of surface ship instead of a subtype. Whether one

identifies an object as a subtype or a version depends on the conceptual designer, and it is not the

role of data model to determine. The reason our model includes both subtype and version con-

cepts is because they make the modelling of application more precise. If there is only one

8

concept -- either subtype or version -- then a subtle ambiguity and a consequent confusion may

result.

An object is created by instantiation [BATO85]. Both object types and object versions can be

instantiated. A version will be instantiated to provide a local working copy of a previous design,

which has the implementation details specified. A type will be instantiated to provide a working

copy for design work starting from scratch, that is, no implementation details are specified. In

case of a battleship design, one instantiates the type battleship to produce a new design of a bat-

tleship from scratch. In other words, the designer has to fill in the values for number and types

of armaments, displacement, etc. If the designer instantiates the version Iowa-class, then he

need not specify the detail for the cannons, since they are already specified. Versioning allows

expedient designing by reusing the old design.

We extend the described model to incorporate multimedia data. The notion is similar to version.

In the extended model, we have another concept called medium. An object type may have

several media, and a medium may be text, graphic, image, voice, signal, etc. So the medium

specifies the mode of transmission in conveying the information from a computer to a human.

Lct's say that the object frigate has graphic as one of its media. Then the displaying of frigate

information in the graphic medium allows the user to see the visual presentation of the frigate.

The regular graphics operations such as zooming, paning, rotation, scaling, etc. can be sup-

ported. Medium actually specifies the procedural detail of presenting the informational content.

Now, using this graphics display of a frigate, the user can point to the cannon of the frigate and

receive information about it. If the object cannon also has the graphics medium, then it too can

be displayed visually (in a separate window). Otherwise, the regular information (record-based

information such as size, firepower, etc.) of the cannon is presented. When there is more than

9

one medium, then the user is prompted for the display medium.

Notice that the framework we have presented here will accomodate a new search technique in

various media. We do not currently have an efficient way to recognize an object in the digitized

image. For example, given a digitized image of a battle scene, it is not possible to identify

objects suct, as tanks and armored vehicles depicted in the scene. If a new algorithm to do the

task is invented, then it can be easily incorporated in our proposed framework, because the

media is nothing but an abstraction of the procedural detail of displaying.

Our approach in handling multimedia objects is not to equate media to type. In the case where a

media is equated to type, an object has a type graphic, text, etc., while in our case an object is of

type carrier, submarine, heavy cruiser, etc., which has a different media. We believe our

approach closer to the meaning of "medium", which is the mode of transferring the information.

We are saying that the object has an intrinsic nature (ie. person, ship, automobile, river, etc) and

this intrinsic nature can be conveyed to others via different media.

III. USER INTERFACE

Of many system requirements that the new advanced DBMS must satisfy, simplicity require-

ment would rank among the most critical ones. No matter how successful we are in meeting the

other requirements, if the system is not simple to learn and use, no one would even bother trying

to use the system. We believe a key to simplicity is a unified user interface. We would like to

have a single, coherent interaction method for the manipulation of information, be it an informa-

tion for marketing analysis, personnel data, or graphical display of design objects. Since the

10

.d"

%•" J ,'.." '..° " .v - • . % • % . ". . . . % - t %.t . ,. -A.. - .. - %- %-% %

-v w -- v

types of information manipulated in the advanced applications are complex, we feel an extension

of a conventional textual language would be inappropriate. We believe the graphical interface

approach has the most potential for becoming a unified interaction method that can be used for

diverse application areas. Other approaches such as the natural language interface and

semantic-based interface (a textual interface based on semantic data models) are simply not

compatible with the way users normally function in carrying out the engineering and business

activities. Many graphical interfaces are already proposed in the literature. They can be

classified broadly into four groups:

a) manipulating business forms and supporting office automation [LUM82, ROWE85, SHU85,

SMIT82, ZLOO82];

b) querying a database based on relational or semantic data model [BRYC86, ELMA85,

GOLD85, WONG82, ZLOO771;

c) managing system resources [GOLD83, WILL84]; and

d) developing general-purpose programs [GLIN84, RAED84].

We think it is possible to create a unified graphical interface by extending/combining/modifying

these proposed methods.

We proposed a graphics interface to the database and reported in [WU87, WU86]. Since we are

dealing with multimedia data, the graphics mode of interaction seems to be most natural and

effective. Our proposed interface provides a graphical representation for the generalization,

aggregation, classification, and association concepts. We still need to add the notion of version

and medium to the proposed interface to make it complete.

11

'-C. *' %-C "*" % C '
°"*

Our proprosed graphics user interface GLAD utilizes a bit-mapped, high-resolution graphics

display terminal. The screen consists of two types of windows: schema and operation window.

In the schema window, GLAD provides an elegant visual representation of real world abstrac-

tion concepts most semantic data models support: aggregation, generalization, classification, and

association. In the operation windows, GLAD describes objects, displays results, and allows

users to specify queries. Windows can be opened, closed, scaled, and moved at the user's will.

The horizontal and vertical elevators are used to pan different portions of a display when the

whole display is too large to fit in a window.

IV. SYSTEM ARCHITECTURE

As mentioned in the Introduction, because it is not possible to anticipate the advances in technol-

ogy in the future, it is important to design a system architecture that would allow us to incor-

porate new techniques into the system as they are developed. Figure 1 is a schematic representa-

tion of the system in which we have outlined some of the key components. The Supervisor com-

ponent, as the name implies, is the module that oversees and coordinates all the activities of a

transaction. It invokes other components to do a specific task and assembles the information it

receives from them. The Data Access component, in addition to dealing with the data from and

to the storage units, actually is assumed to contain many service components to be invoked by

the other processing components. For example, the locking manager, the transaction manager.

the recovery unit, etc. are components in this box, although they are not explicitly illustrated in

the diagram. The other components like the Formatted Data Processing unit, the Text Processing

Unit, etc. are specilized components that would perform designated tasks.

12

In essence, compared to today's DBMS, the components like the Text Processing, the Graphics

and Image Processing, etc. are generally nonexistent. Although conceptually that is all, actually

there is a major difference between the proposed system and current DBMS. The difference is

that current DBMS are not designed to allow its components replaced. As such, the modules'

interfaces are not so clearly defined. Here, it is of paramount importance that we have very well

and very clearly defined component interfaces so that each component as indicated in the

diagram would be replaceable by another one in its place. This is by no means an easy task. In

fact, one may question whether that is at all possible. There is substantial ground for this skepti-

cism, particularly when we consider the complexity that may be contained in the single box

called Formatted Data Processing. This one box represents a great part of today's DBMS.

While this question cannot be answered at this time, it certainly is an area where research can be

and should be conducted. Further, not all the processing boxes represent the same complexity.

For example, the Text Processing component is likely to be much simpler than the Graphics and

Image Processing unit. In fact, we may even want to split this latter component into two: one for

graphics and another one for images. The complexity of the units depend on the complexity of

the structure of the information represented by the data. Images are definitely more complex than

text or graphics, as it does not contain regularity as in the others. It is too early for us to say what

may or may not be possible to achieve at this time. We only wish to point out that, if we do not

consider this factor, we will run the risk that our system might become outdated by the time we

have implemented a prototype. It will also mean that we will forever be chasing the advances in

technology but never can we catch up.

Pursuing the same philosophy, it actually means that we should further divide the major com-

ponents into subcomponents in such a way that would allow us to plug into the system replace-

ment subcomponents. Indeed, an ideal is to have a system with many parts so designed that they

13

can be replaced at will without disturbing the rest of the system.

V. INTEGRATION WITH ADVANCED TECHNIQUES

In the last section, we discussed the importance of having an architecture in the system that we

can plug in new components when new techniques are developed. Let us consider here more

specifically some of the new techniques that may come in the future.

The first thing that comes to mind is probably the application of artificial intelligence (AI) in

DBMS. AI, by definition, is the area of research where one defines techniques that allow us to

analyze and find solutions to problems as done by people. This encompasses the representation

of information and knowledge, the storage and retrieval of the information, the reasoning or

rationalization process, and all the other things that get involved in the process to get to an

answer. As such, we can see that the area has been around as long as the existence of civilization

itself. Given that this is the case, we can see that it is not possible to expect that we will have all

the answers from Al researchers soon in the future.

Yet, the tie between database techniques and Al, in our view, is very close and strong. We see

that when a solution to an Al approach is not known, researchers in Al will continue to pursue it

until it is solved. However, once an Al technique becomes clearly defined, then the database

technologists will want to incorporate that technique into a DBMS. The database researchers are

system builders who constantly strive to incorporate new things into their systems to solve

broader problems. After all, database researchers always have to find answers to queries posed

by people. Since the power of the high level queries are practically capable of expressing most
U

of the questions we can form, even when they are complex, database researchers in reality would

14

want to incorporate Al techniques to their systems if these techniques are found to be useful for

them to answe queries.

If this view is correct, then the incorporation of Al techniques, or their derivatives, would be just

a matter of timing. This closeness between the two areas makes it most appropriate that one

should design DBMS that tightly couple techniques from these two areas together. Thus, the pro-

posals that want to build additional layers on top of a DBMS to allow one to use a new Al tech-

nique is not a good way to build a system. This approach does not let us build the system as one

piece and would cause us to lose performance. Most likely, many things will be done more than

once as one layer would not know what to expect from the other.

What can be expected from the advance of Al techniques is not possible to guess. However, if

we can separate the function that applies AI techniques to query processing into isolated com-

ponents, we can then continue to include the new techniques as they are developed. One should

note, however, when we say an Al component, we do not really mean that there is only one pro-

gram or one group of programs. In fact, the Al box actually represents many, many smaller

boxes. For example, we can see that, within this Al box, there may be boxes that process rules or

knowledge bases. There may be a box to assess and assign risks, probabilities, or to interpolate

statistics. There may be boxes to process images, or many, many other things. While we do not

know exactly how many things we should have here, we would know how to deal with the addi-

tional ones if we know how to deal with some of them. Thus, we shall concentrate on only few

of the well known ones in our research at this time.

Let us look at specific examples to illustrate our point. In the processing of formatted data, we

know fairly well how to handle things. We have good data structures that allow us to process

data efficiently. If a customer of a bank, for instance, asks for the balance of his account, the sys-

.........

tern knows how to get that answer without doing an exhaustive search, in general, because a

DBMS usually has indexing methods for that purpose. In cases like this, we can actually find not

just an answer, but a precise and exact answer. Let us consider what happens in the case for

unformatted data.

First, let us look at the simple extension from formatted data t(text data such as the one in a

technical paper or in a written report. While many researchers have looked into this problem, no

good solutions have been found. There are solutions, though. For example, if we want to know

what documents contain information on foreign policy on Russia, we have difficulty getting a

precise answer, as we have many alternatives to go about doing the query search in this case. For

example, do we look for documents containing exact phrases as indicated here? Do we need a

document containing words that match the phrase here? Or do we want documents dealing with .

the general meaning of the phrase as stated? In each of these cases, we will get a different

answer. It can be much harder in one way than another. Effective and efficient retrieval is

difficult because we are now dealing with information rather than just raw data. Information and

knowledge is generally imprecise. Answers to queries on them are therefore generally not pre-

cise either.

When we extend from text into even more unformatted data, we have much more difficulty. Let

us consider image data as an example. Assume we have stored in our system all the photographs

we have taken. Now, suppose we want to find pictures that contain at least one destroyer. How

are we to know which pictures contain destroyer? We first have to know what a destoyer sup-

posed to look like. But that may not be sufficient. We need to know how to recognize a des-

troyer in all the different positons and angles and in groups, if we wish to be sure that we get the

correct answer, namely all the pictures with at least one destoyer. This is indeed Al research.

Today, Al techniques have not advanced to the state that would allow us to process queries of

16

-4 VO; F-Z * . -&

this kind. If such techniques were available, there is no question that they should be included in a

database system to be used to process these queries in the same way that we do for the formatted

data queries.

However, even in the best of the cases, we will not be able to get answers to queries as nicely as

we do in the formatted data. In formatted data processing, we have precise answers. In this kind

of information, it is not possible to expect the same kind of service. In real life, if we have a per-

son looking at the pictures, there may be pictures that are not recognized by the person because

of various reasons. While it may be possible for the computer to do a better job than a person, it

would be a long time before the technology would advance to that state in this case.

There are, of course, other solutions. We can include a description such as keywords to each pic-

ture in the file. We can then search the key words instead. This approach, in fact, is the one

adopted even in representing text documents. While we can accept solutions like this, it is

definitely not the best kind. If the person who does the classification has forgotten to enter a

descriptor, the system will never be able to get that particular document or picture. Since no one

can think of all the descriptors pertinent to queries that are not yet defined, it is a sure thing that

many pictures will not be found by the system even when they are the ones desired by the user

who enters the query.

Further, such technique is not so useful for the more complex queries. For example, suppose one

wishes to find the pictures that contain a carrier following a destroyer in a battle group forma-

tion. One would now have to recognize that certain motions imply something or other. For

example, even though both a carrier and a destroyer are detected, if the carrier is in front, then

this picture may be not the one for this query. What we want to say is this: In processing infor-

mation, one needs advances in many fields, especifically in Al. Today, we use DBMS mainly to

17

11- RA F

• ~ ~ ~ ~ ~ ~ ~ ~ ~ _ _ V P IM R? IL X 1. :Lk _._L'7V 'J; . ..l . .:- ' .. ,
, . - - - - ' v , w ,

manage formatted data. Acutally, we want to develop systems that would manage information,

which comes to us in many forms. However, the state of the art is such that we do not know

how to handle the unformatted data well. Nevertheless, we should design DBMS in such a way

that allow us to include the advances in technology in other fields.

The above argument can easily be extended to include voice prcessing or signal processing. In

commercial data processing, signal processing is not very useful. In military data processing,

signal processing is important. We shall not belabor the necessity of including signal processing

in a DBMS, as there are numerous examples of its need in military data processing. In that

environment, information is stored and derived from many forms, frequently in signals. In cer-

tain cases, the signals are transformed. For example, the noise from the engine of a submarine

will likely be some graphic waveforms rather than just as sound waves. In other cases, the signal

may be received in its original form. Whatever it is, the system may be required to store and

retrieve it. In many cases, one may have to analyse data from many aspects in order to derive an

answer to a query. By having the architecture of our system modular, we can handle this kind of
1,

processing as well.

We have earlier mentioned that risk assessment should be included in DBMS for military appli-

cations. Let us pursue this aspect a little further.

It is generally true that some queries are more pressing than others. In military situations, the

inability to complete a query processing may have dire consequences. For example, we may

have received a signal that something is approaching our base and we do not know exactly what

it is. We try to search our database to see if anything resembling this signal. If we do not finish

processing our search, numerous lives may be lost. The risk is high in this case and it should be

so recognized. ,

..2

18 ";
iI

. • • ,.%

One may think that we should classify queries into priorities and the system will handle them

accordingly. This is a beginning. It means that a DBMS should include at least priorities in

queries and shedule and process them accordingly. It is not sufficient. We should go further.

Let us suppose that we can determine the likelihood that the signal is not a threatening one. In

that case, even if we do not finish processing the query, there is not much of a danger. On the

other hand, if, after some analysis, the system finds that the signal is very likely to have a highly

destructive effect, such result should be communicated to the user, even though the system has

not completed the whole search.

Once again, it seems that Al techniques will be involved. We think that, in the AI box, there

shoLId be modules that would provide assessment on the risk factor. In some cases, the assess-

ment may depend on the analysis of the statistics as given in the database. Whether one would

need to store additional information in the system to use depends on the application and the

algorithm used to generate an answer. For example, while it is possible to derive probability

based on statistics, it is not possible to find any probability if the statistics and information were

not there. For example, we may find an object approaching and identify the object to be hostile

and threatening, but since the database does not contain the information detailing the explosive

power of the object, we are not capable to assess the damage that may be caused by the object.

One may not be able to correctly assign the risk factor for this situation.

In any case, risk is a valid factor to be considered and the system should include some intelli-

gence in it so that appropriate answer can be generated.

The above approach really argues that DBMS and AI should be tightly coupled so that tech-

niques from the two areas should be integrated. While this view may not be shared by all

researchers, it seems to us most appropriate. Without DBMS technology, Al would not be able
'S

19

P.,ip ., ,,, - - , ,€ . ,, .,-. ,-, ., , .P.

rX KV W m

to process the voluminous data in an organized manner. Without the use of some of the Al tech-

niques, a DBMS will not be able to process intelligently many queries. While it will always be

true that Al will try to understand and find solutions to many seemingly ill-defined problems,

once a solution is found, it would be appropriate to include it into a DBMS.

From the architectural point of view, as shown in Figure 1, one can say that every DBMS should

have an Al component that allows the DBMS to answer queries which require logical or heuris-

tic deductions or inductions. The DBMS, in this case will then be the superstructure that inter-

faces directly with the users. Such proposal is logical as DBMS traditionally deals with end-user

query interfaces. On the other hand, it can also be stated that, within every Al system, there is a

database system. As true to life applications always will need tens of thousands of rules and mil-

lions of facts or pieces of information, a DBMS is needed to help manage and process these rules

and the information, freeing the Al component to do the logical or heuristic processing. Whether

it is one way or another, it is not clear at this time. Much research is needed to answer this ques-

tion. It is clear to us, however, that a strong coupling or integration is likely the direction to

proceed.

VI. PERFORMANCE ENHANCEMENT

As said before, performance in military applications at times can be more demanding than com-

mercial processing. The real-time element here can be most critical. While in commercial appli-

cations, a delay for processing a query may cause an organization a very large sum of money, in

military applications, delay in response in some cases can literally mean life and death to many

people. Even when a military application may not have the high transaction volume as one in

commercial application, the response may be a lot more urgent. Split second timing may be

20

necessary. Thus, it is imperative that we should see how such demands can be satisfied.

Traditionally, database management systems are designed to use moderate main memory space

to hold the necessary data from secondary storage devices and use software to process the data

brought in from storage. As software speed is restricted by the hardware capability, there is a

hardware limit to what the designer and implementer can do to make the system faster. How-

ever, if one were to use hardware to implement some of the database functions, an increase in -

performance can be obtained. This is the approach of the database machine research. However,

in database machines, we have not gone far enough. We have not tried to encapsulate many of

the database processing algorithms in hardware form. As VLSI techniques have now been so far

advanced that almost all algorithms can be captured in chips, we should take advantage of that

by designing our system in such a way that we can interchange functions between hardware and

software. For example, we can have a computer chip that does nothing but sorting. We can have

another computer chip that does only index search. And so on and so forth. In essence, we are

saying that the software and hardware boundaries are no longer distinct as it is today. With such

an architecture, we will be able to take advantage of hardware advances as they come to

increase performance. Naturally, by replacing software algorithms in hardware form, perfor-

mance gains can be tremendous.

Another area where hardware advance can be utilized to advantage in increasing performance is

the use of massive memory in a system. In recent years, main memory size has grown by leaps

and bounds. It is forseeable that, in the future, one can consider it feasible to have a substantial

portion of the databases residing in the main memory. It is this kind of expectation that research-

ers have in the past few years started research on main memory databases [DeWI84, LEHM86a,

LEHM86b]. In their works, it has been shown that other than the gain in pure, raw speed over

secondary storage devices, one would have to use different strategies and data structures in the

21

Ir m P" r " ""
% .'

DBMS in order to get the maximum utilization of the increased memory size. In fact, pursuing

further on the use of main memory to enhance performance, we will investigate the problem of

allocating some primary data in the memory in expectation of the urgent demands as discussed

above on risk processing. Thus, if we can identify certain group of data that is most likely

needed to process the high risk queries, we can store the data in the main memory all the time. In

this way, we shall be able to satisfy the urgent demands when they occur.

Just storing data in the main memory alone would not be able to satisfy the critical demand of

split second responses, as frequently there is too much processing to be done and a lot of data to

be processed. Having hardware embodiment of algorithms as just proposed would help. How-

ever, when the data volume to be processed is massive, one would need additional means to

achieve our goal. For example, suppose one has to derive an answer statistically and the volume

of data is huge. Is there something that we can do to help the system. The answer is positive.

Under certain circumstances, we can build additional structures and store redundant information

to facilitate the process. The paper by Srivastana and Lum [SRIV86] illustrates this point.

Statistics applications in general require the evaluation of a large amount of data to derive a

value. For example, finding the mean, the deviation from the mean, the confidence level that the

result is meaningful, etc. are some of the common calculations in statistical applications. Using V

only the raw data and not to have additional stored data for these calculations would definitely

be time-consuming and requiring a lot of processing. We can, however, store additional statisti-

cal values as suggested in that paper. In this way, statistical information can be determined at a

small fraction of the time needed otherwise, and queries requiring quick and urgent responses

can be thus satisfied.

Other techniques that may be used to process queries requiring split second responses include

22

S0 e

Y% ,-WrW n rW - % PJPJT !',. %A~ ri W- W nX RXM. - J[%X% _J - .F~- qrW'F

the use of approximation techniques and putting out answers that are not complete. In many

scientific displines such as engineering, the practice is to use approximates but on the safe side.

In current database processing, we do not do anything like that. In actual human behavior, it is

more often than not that we use imprecise information and satisfy ourselves with mostly approx-

imate answers. As a first step, if not the last, maybe we should have the same approach in the

system as persons actually do. Moreover, partial answers are not necessarily useless. Fre- "

quently, people can extrapolate from the partial answer to arrive at a useful decision.
".. o -

VII. MULTI-DATA MODEL DBMS

In the past years, DBMS have become used in many diversified applications. It is so pervasive
..,...,-.

that almost all major systems have in it a DBMS. Moreover, as there is not any 'standard' data .
5%

model, over the years, DBMS have been developed to have a number of data models and inter-

faces, including query languages. Not only that it is not practical, but it is really not feasible to

think that, in major organizations as big as the US government, or even just one branch of the

armed services, all its DBMS are homogeneous. In fact, it is expected to be exactly the opposite.

That is, users cannot afford to throw the systems they have been using for years to go into a new I
system. This would be the case even when financially and politically realizable, because realisti-

cally it is not possible to have the manpower to make it come true. Thus, what we need is to find _

a way that the various DBMS can commuincate with each other. If this is not possible, we

should have at least in some place a DBMS that knows how to integrate data obtained from the

various systems with different models.

Figure 2 illustrates a scenario which may occur. A commander is situated in an area served

directly by System A. However, to enable him to make his decision intelligently, he needs infor-

23

!Z N
ZeZ Z %

mation from many systems, namely System B, C, and D. Now, as these systems contain hetero-

geneous DBMS, running with different hardware and software configurations and using different

data models, it is necessary to find a way so that information can be obtained at the site of Sys-

tem A. One such way is to employ a multi-model and multi-lingual DBMS [DEMU87I at the site

of System A. In this way, the user in System A may write database transactions for the other

systems and obtain information from them to be converted and displayed appropriately at the

user's location.

Extrapolating this scenario, one can see that it may be advantageous for the different systems,

namely B, C and D, to have a copy of the muli-model and multi-lingual DBMS at their sites,

coexisting with other DBMS, so that every site can receive and send information to others as

required.

VIII. CONCLUSION

This paper describes an overview of a DBMS project at the Naval Postgraduate School initiated

to develop an advanced DBMS that incorporates many new concepts that are not yet addressed

in today's research. The concepts of risk assessment and the use of approximation or even par-

tial answers in certain situations to answer queries are definitely new. While such approaches

may not be completely appropriate in commercial applications for which current DBMS have

been developed, they are most useful in other applications that occur in our normal daily life

environment.

Today's DBMS manages massive amount of data in the business world very well, but they are

not well suited for scientific or engineering applications and not so useful in other situations such

24

'Wwfl :rWWU UW - Wt.r ,,W gU lU , u, _"r' w _n..n _ urur ,n UT. an an . ,rn , - ,w a,.a." VU YU -- ' !W'',-7-V w , 6K -V-'% ''A

as military applications. This occurs because the emphasis we have placed in the past is to have

the DBMS handle data, but not information. People process information, but the systems we

developed only process data. Information also come in different forms: fixed-size records, text,

graphics, images, voices and signals. Advanced DBMS, thus, should have a capability of han-

dling these multimedia information. Researchers in AI are more oriented toward the develop-

ment of techniques to handle information (not necessarily multimedia information, though).

Unfortunately, as information is very difficult to be precisely defined, advances in AI research

have been slow. Since DBMS are required to be "smarter" in answering queries in advanced

application areas, techniques developed in AI for processing information are directly relevant

and must be incorporated into advanced DBMS whenever appropriate. It is our belief that Al

techniques are one of the most important ingredient for a successful realization of an advanced

DBMS.

Since it is not possible to predict something that has not been developed, and since it is not prac-

tical to build a new DBMS whenever new techniques are found, we believe that we must

develop an architecture for the DBMS in such a way that it can be flexibly and broadly extended

to incorporate new development in multimedia processing, inference capalibities, storage

methods and others. A highly extensible architecture, with capability to handle multiple data

languages and models, much beyond that has been conceived in other research programs, is

indispensable for realizing an advanced DBMS.

Our report has identified many problems and a rather broad scope, even though we considered

only a subset of the important areas that are pertinent to the Command Systems Technology

Block Program. Our next step is to narrow down the scope further to arrive at a better focus by

studying more closely the applications in this program. Meanwhile, we shall direct our efforts on

object-oriented data model, user interface, and intelligent processing capabilities such as risk

25

assessment, which are believed to be basic in the pursuit of developing an advanced DBMS to

support these applications.

REFERENCES

[BATO851 Batory, D. S. and Kim, W. "Modeling Concepts for VLSI CAD Objects," ACM
Transactions on Database Systems, Vol 10, No 3, September 1985, 322-346.

[BATO87a] Batory, D.S., J.R. Barnett, J.F. Garza, K.P. Smith, K. Tsukuda, B.C. Twichell,
T.E. Wise, "Genesis: A Reconfigurable Database Management System," Univer-
sity of Texas at Austin Technical Report TR-86-07, March, 1986, also to appear
in IEEE TOSE.

[BATO87b] Batory, D.S., "A Molecular Database Systems Technology," University of Texas
at Austin Technical Report TR-87-23, June, 1987.

[BRYC86] Bryce, D. and Hull, R., "SNAP: A Grahics-Based Schema Manager," Proceed-
ings of Data Engineering Conference, Los Angeles, 1986, 151-164.

[CHOC81] Chock, M., A.F. Cardenas, A. Klinger, "Manipulating Data Structures in Pictorial
Information Systems", IEEE Computer, Nov. 1981, pp43-49.

[CHOC84] Chock, M., A.F. Cardenas, A. Klinger, "Database Structure and Manipulation
Capabilities of a Picture Database Management System (PICDMS)", IEEE Trans.
on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 4, July 1984,
pp484-492.

[CHRI86a] Christodoulakis, S., F. Ho, M. Theodoridou, "The Multimedia Object Presenta-
tion Manager of MINOS: A Symmetric Approach", Proceedings of ACM SIG-
MOD '86, Washington, D.C., May 28-30, 1986, pp2 9 5 -3 10 .

[CHRI86b] Christodoulakis, S., M. Theodoridou, F. Ho, M. Papa, A. Pathria, "Multimedia
Document Presentation, Information Extraction, and Document Formation in
MINOS: A Model and a System", ACM Trans. of Office Information Systems,
Vol. 4, No. 4, Oct. 1986, pp345-383.

[CROW87] Crowder, S. and Wu, C. T., "Visual Information Management System for an
Effective Performance of Office Tasks," Proceedings of the 2nd International
Conference on Human-Computer Interaction, Honolulu, August 1987.

26

V~

Iqrynwln Wtun-n .Trar r X TXI r' X mwnU XWr. X f l t flfl 7r -v y V M ~ WWW .1b WWW

[DAYA86] Dayal, U., J.M. Smith, "PROBE: A Knowledge-Oriented Database Management
System" in On Knowledge Base Management Systems, published by Springer-
Verlag, M.L. Brodie and J.Mylopoulos, eds., 1986.

[DADA86] Dadam, P., K. Kuesport, F. Andersen, H. Blanken, R. Erbe, J. Gue aaner, V. Lum,
P. Pistor, G. Walch, "A DBMS Prototype to Support Extended NF Relations: An
Integrated View on Flat Tables and Hierarchies," Proceedings of SIGMOD 86,
Washington, D. C., May, 1986, 356-367.

[DAYA87] Dayal, U., F. Manola, A. Buchmann, U. Chakravarthy, D. Goldhirsch, S. Heiler,
J. Orenstein, A. Rosenthal, "Simplifying Complex Objects: The PROBE
Approach to Modelling and Querying Them", Proceedings of German Database
Conference (Datenbanksysteme in Buro, Technik und Wissenschaft), Apr. 1987,
Darmsdadt, Germany.

[DEMU87] Demuijian, S. and D. K. Hsiao, "The Multilingual Database System," Proceed-
ings of the Third International Conference on data Engineering, Los Angeles,
Feb, 1987, 44-53.

[DeWI84] DeWitt, D., R. Katz, F. Olken, L. Shapiro, M. Stonebraker, D. Wood, "Imple-
mentation Techniques for Main Memory Database Systems", Proceeedings of
ACM SIGMOD '84, Boston, Massachusetts, June, 1984, 1-8.

[ELMA85] Ehnasri, R. A. and Larson, J. A., "A Graphical Query Facility for ER Databases,"
Proceedings of Conference on E-R Approach, Chicago, 1985, 236-245.

[GALL84] Gallaire, H., Minker, J. and Nicolas, J.-M. "Logic and Databases: A Deductive
Approach," ACM Computing Surveys, Vol 16, No 2, June 1984, 153-183.

[GALL77] Gallaire, H. and Minker, J. (ed) Logic and Data Bases, Plenum Press, New York,
1977.

[GLIN84] Glinert, E. P. and Tanimoto, S. L., "Pict: An Interactive Graphical Programming
Environment," IEEE Computer Magazine, Vol 17, No 11, 1984, 7-25.

[GOLD85] Goldman, K. J., Goldman, S. A., Kanellakis, P. C. and Zdonik, S. B., "ISIS: Inter-
face for a Semantic Information System," Proceedings of ACM SIGMOD Confer-
ence, 1985, 328-342.

[GOLD83] Goldberg, A. and Robson, D., Smalltalk-80, the Language and Its Implementa-
tion, Addison-Wesley, 1983.

[GUT"T78] Guttag, J. V., E. Horowitz, and D. R. Musser, "Abstract Data Types and Software
Validations," Communication of ACM, Vol 21, No 12, 1978, 1048-1064.

27

[LEHM86a] Lehman, T.J., M.J. Carey, "Query Processing in Main Memory Database
Management Systems", Proceedings of ACM SIGMOD '86, Washington, D.C.,
May 28-30, 1986, pp239-250.

[LEHM86b] Lehman, T.J., M.J. Carey, "A Study of Index Structures for Main Memory Data-
base Management Systems", Proceedings of VLDB 1986, pp294-303.

[LIND86] Lindsay, B., J. McPherson, H. Pirahesh, "A Data Management Extension Archi-
tecture", IBM Research Report RJ5436 (55565), Dec. 19, 1986.

[LISK75] Liskov, B. H., and S. N. Zilles, "Specification Techniques for Data Abstractions,"
IEEE Transactions on Software Engineering, SE-1:1, 1975, 7-18.

[LUM85] Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner, J.
Woodfill, "Design of an Integrated DBMS to Support Advanced Applications,"
Proceedings of International Conference on Foundations of Data Organization,
Kyoto, Japan, May, 1985, 21-31. A similar version published in Dateubanksys-
teme fuer buro, Technik und Wissenschaff, A. Blaser and P. Pistor, Editors,
Springer-Verlag, 362-381.

[LUM82] Lum, V. Y., Choy, D. M. and Shu, N. C., "OPUS: An Office Procedure Automa-
tion System," IBM System Journal, Vol 21, No 3, 1982.

[MADI87a] Madison, D. and Wu, C. T., "An Expert System Interface and Data Requirements
for the Integrated Design and Manufacturing Process," Proceedings of the 3rd
International Conference on Data Engineering, Los Angeles, February 1987,
610-618.

[MADI87b] Madison, D. and Wu, C. T., "The Integration in Computer Integrated Manufactur-
ing," Proceedings of the International Conference on Engineering Design, Bos-
ton, August 1987.

[MADI87c] Madison, D., Wilbur, T. and Wu, C. T., "A Data-Oriented Approach to Integrat-
ing Manufacturing Functions," submitted to Computer In Manufacturing
Engineering.

[MANL86] Manola, F., U. Dayal, "PDM: An Object-Oriented Data Model", Proceedings of
the International Workshop on Object-Oriented Database Systems, Pacific Grove,
CA, Sept. 1986.

[MASU87] Masunaga, Y., "Multimedia Databases: A Formal Framework", Proceedings of
IEEE Computer Society Office Automation Symposium, Gaithersburg, MD, Apr.
27-29, 1987, pp36-45.

[McPH87] McPherson, J., H. Pirahesh, "An Overview of Extensibility in Starburst", IBM
Research Report RJ5599 (56909), Apr. 9, 1987.

28

[OREN86] Orenstein, J.A., D. Goldhirsch, F.A. Manola, "The Architecture of the PROBE
Database System", Computer Corporation of America Working Paper 142.

[RAED84] Raeder, G., "Programming in Pictures," Ph.D. Dissertation, University of South-
em California, November 1984.

[ROWE85] Rowe, L. R., "Fill-in-the-Form Programming," Proceedings of VLDB 85, Stock-
holm, 1985.

[SCHA86] Schwarz, P., W. Chang, J.C. Freytag, G. Lohman, J. McPherson, C. Mohan, H.
Pirahesh, "Extensibility in the Starburst Database System," IBM Research Report
RJ5311 (54671), Sept. 23, 1986.

[SHAW80] Shaw, M, "The Impact of Abstraction Concerns on Modem Programming
Languages," Proceedings of IEEE, 68:9, 1980, 1119-1130.

[SHU85] Shu, N. C., "FORMAL: A Forms-Oriented, Visual-Directed Application
Development System," IEEE Computer Magazine, Vol 18, No 8, 38-49.

[SMIT771 Smith, J. M. and Smith, D. C. P. "Database Abstractions: Aggregation and Gen-
eralization," ACM Transactions on Database Systems, Vol 2, No 2, June 1977,
105-133.

[SMIT82] Smith, D. C., Irby, C., Kimball, R. and Harslem, E. "The Star User Interface: An
Overview," Proceedings of National Computer Conference, 1982, 515-527.

[SRIV86] Srivastava, J. and V. Lum, "A Tree Based Statistics Access Method (TBSAM) for
Univariate Analysis," IBM Research Report RJ 5399 (55188), Nov, 1986.

[STON87] Stonbraker, M., L.A. Rowe, "The POSTGRES Papers", University of California
at Berkeley Technical Memorandum No. UCB/ERL M86/85, June 25, 1987.

[WOEL86 Woelk, D., W. Kim, W. Luther, "An Object-Oriented Approach to Multimedia
Databases", Proceedings of ACM SIGMOD '86, Washington, D.C., May 28-30,
1986, pp3 1 1 -3 2 5 .

[WOEL87] Woelk, D., W. Luther, W. Kim, "Multimedia Applications and Database Require-
ments", Proceedings of IEEE Computer Society Office Automation Symposium,
Gaithersburg, MD, Apr. 27-29, 1987, pp 180-189.

[WONG82] Wong, H. K. T. and Kuo, I., "GUIDE: Graphical User Interface for Database
Exploration," Proceedings of VLDB 82, Mexico City, 1982, 22-32.

[WU861 Wu, C. T., "A New Graphical User Interface for Accessing a Database," Proceed-
ings of Computer Graphics Tokyo '86 Conference, Tokyo, April 1986.

29

[WU87] Wu, C. T., "GLAD: Graphics LAnguage for Database," Proceedings of the 11th
International Computer Software and Applications Conference, Tokyo, October
1987.

[ZL00771 Zloof, M. M., "Query-by-Example: A Database Language," IBM System Journal,
Vol 16, No 4, 1977, 324-343.

[ZL0082] Zloof, M. M., "Office-by-Example: A Business Language that Unifies Data and
Word Processing and Electronic Mail," IBM System Journal, Vol 21, No 3, 1982.

30A

..

%A.

tvx b~

INTERFACE

SUPERVISOR

FORMATTED
DATA..

DATA -

VOICE
ACCCSSIS

SIGNAL
,

I LsIPROCESSINGj
DAT A

FIGURE I SCHEMATIC ARCHITECTURE

31 '.

Paa %

a bed* f h...

24 77

,,-. . --,-..System B

System A 'System C

0B

System D

Figure 2 Distributed Environment

32

Twrr : fl r tr l w . r U9 -I . ", ,

Distribution List

SPAWAR-3242
Attn: Phil Andrews
Washington, DC 20363-5100

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analyses 1
4401 Ford Ave.
Alexandria, VA 22302-0268

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

John Maynard 1
Code 402
Command and Control Departments 1
Naval Ocean Systems Center
San Diego, CA 92152

Dr. Sherman Gee 1
ONT-221
Chief of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Leah Wong 1
Code 443
Command and Control Department
Naval Ocean Systems Center
San Diego, CA 92152

33

iLwsD

* * ~ *~* ~ * * ~ S

